Towards Complex System Theory

Miroslav Svítek

Abstract


This tutorial summarizes the new approach to complex system theory that comes basically from physical   information analogies. The information components and gates are defined in a similar way as components in electrical or mechanical engineering. Such approach enables the creation of complex networks through their serial, parallel or feedback ordering. Taking into account wave probabilistic functions in analogy with quantum physics, we can enrich the system theory with features such as entanglement. It is shown that such approach can explain emergencies and self-organization properties of complex systems.

Keywords


complex system theory; knowledge; quantum information systems; information power; information physics; self-organization; smart systems

Full Text:

PDF

References


BAR-HILLER Y., CARNAP R. Semantic Information. The British Journal for the Philosophy of Science. 1953, 4(14), pp. 147-157, doi: 10.1093/bjps/IV.14.147.

CHUA, L. O. Memristor – The Missing Circuit Element. IEEE Transactions on Circuit Theory. 1971, 18(5), pp. 507–519, doi: 10.1109/TCT.1971.1083337.

DEREK F. LAWDEN. The Mathematical Principles of Quantum Mechanics. Mineola, New York: Dover Publications, 2005.

FEYNMAN R.P., LEIGHTON R.B., SANDS M. The Feynman Lectures on Physics. USA: Addison Wesley Longman, 1966.

FEYNMAN R.P. QED: The Strange Theory of Light and Matter. USA: Addison Wesley Longman, 1966.

KAUFFMAN S. Autonomous Agents. In: J.D. Barrow, P.C.W. Davies, and C.L. Harper Jr., eds. Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity. UK:

Cambridge University Press, 2004.

KHRENNIKOV, A. Linear representations of probabilistic transformations induced by context transitions. Journal of Physics A: Mathematical and General. 2001, 34(47), pp. 9965–9981, doi: 10.1088/0305-4470/34/47/304.

KHRENNIKOV, A. Reconstruction of quantum theory on the basis of the formula of total probability. In: G. Adenier, A. Khrennikov, A. Yu, eds. Proceedings of conference foundations of probability and physics-3, Melville, New York: American Institute of Physics, serial conference proceedings. 2005, 750, pp. 187–219, doi: 10.1063/1.1874572.

MOOS P., MALINOVSKÝ V. Information Systems and Technologies. Praha: Czech Technical University in Prague, 2008.

NOVAES S.F. Standard model: An introduction. In: Particles and Fields, Proceedings of the X Jorge André Swieca Summer School, Sao Paulo, Brazil. Singapore: World Scientific, 2000, pp. 5–102.

PETERKA V. Bayesian Approach to System Identification. In: P. EYKHOFF, ed. Trends and Progress in System Identification. New York: Pergamon, 1981, pp. 239–304, doi:

1016/B978-0-08-025683-2.50013-2.

SHANNON C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27(3), pp. 379-423, 623-656, doi: 10.1002/j.1538-7305.1948.tb01338.x.

STONIER T. Information and the Internal Structure of the Universe. London: Springer-Verlag, 1990, doi: 10.1007/978-1-4471-3265-3.

STEINER M. The Applicability of Mathematics as a Philosophical Problem. Cambridge: Harvard University Press, 1998.

SVÍTEK M. Wave probabilistic models. Neural Network World. 2007, 17(5), pp. 469-481.

SVÍTEK M. Quasi-Non-Ergodic Probabilistic Systems and Wave Probabilistic Functions. Neural Network World. 2009, 19(3), pp. 307-320.

SVÍTEK M. Investigation to Heisenberg’s Uncertainty Limit. Neural Network World. 2008, 18(6), pp. 489-498.

SVÍTEK M. Quantum System Modelling. International Journal on General Systems. 2008, 37(5), pp. 603-626, doi: 10.1080/03081070701833039.

SVÍTEK, M. Wave probabilities and quantum entanglement. Neural Network World. 2008, 18(5), pp. 401-406.

SVÍTEK M. Applying Wave Probabilistic Functions for Dynamic System Modelling. IEEE Transactions on System, Man and Cybernetics, Part C: Applications and Reviews. 2011, 41(5), pp. 674-681, doi: 10.1109/TSMCC.2010.2093127.

SVÍTEK M. Wave Probabilistic Functions for Quantum Cybernetics. IEEE Transactions on System, Man and Cybernetics, Part C: Applications and Reviews. 2012, 42(2), pp. 233-240, doi: 10.1109/TSMCC.2011.2115237.

SVÍTEK M., VOTRUBA Z., MOOS P. Towards Information Circuits. Neural Network World. 2010, 20(2), pp. 241-247.

SVÍTEK M. Wave probabilistic information power. Neural Network World. 2011, 21(3), pp. 269-276, doi: 10.14311/nnw.2011.21.016.

SVÍTEK M. Quantum Subsystems Connections. Neural network World. 2013, 23(4), pp. 287-298, doi: 10.14311/NNW.2013.23.018.

SVÍTEK M., VOTRUBA Z., ZELINKA T., JIROVSKÝ V., NOVÁ M. Transport Telematics - Systemic View. 1st ed. New York: WSEAS Press, 2013.

SVÍTEK, M. Quantum System Theory: Principles and Applications. Saarbrucken: VDM Verlag Dr. Müller, 2010.

SVÍTEK, M. Dynamical Systems with Reduced Dimensionality. 1st ed. Praha: Czech Technical University in Prague, 2006.

SVÍTEK M. Víc než součet částí aneb Systémový pohled na proces lidského poznání [More than sum of pieces – systematic approach to knowledge]. Prague: Academia, 2013. In Czech.

SVÍTEK M. Conditional Combinations of Quantum Systems. Neural Network World. 2011, 21(1), pp. 67-73, doi: 10.14311/NNW.2011.21.030.

SVÍTEK M. Telematic approach into program of smart cities. In: Proceedings of the 7th Euro American Conference on Telematics and Information Systems (EATIS 2014), Valparaiso, Chile. New York: ACM, 2014, pp. 34:1–34:2.

SVÍTEK M: Quantum Models for Brain Network. In: Proceedings of the 4th International Conference on Mathematical, Biology and Bioinformatics, Pushchino, Russia. Moscow: MaxPress, 2012, pp. 170-171.

SVÍTEK M. Complementary variables and its application in statistics. Neural network World. 2007, 17(3), pp. 237-253.

SVÍTEK M. Theory and Algorithm for Time Series Compression. Neural Network World. 2005, 15(1), pp. 53-67.

SVÍTEK M., NOVOVIČOVÁ J. Performance Parameters Definition and Processing. Neural Network World. 2005, 15(6), pp. 567-577.

ZELINKA, T., SVÍTEK, M. Multi-path communications access decision scheme. In: Proceedings of the 12-th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, Florida, USA. Orlando: International Institute of Informatics and Systemics, 2008, 3, pp. 233-237.

TALEB N.N. The Black Swan: The Impact of the Highly Improbable. 2nd edition. New York: Random House Trade Paperbacks, 2010.

VEDRAL V. Introduction to Quantum Information Science. Oxford University Press, 2006, doi: 10.1093/acprof:oso/9780199215706.001.0001.

VLČEK J. Systémové inženýrství [Systems Engineering]. Praha: Czech Technical University in Prague, 1999. In Czech.

VLČEK J., et al. Informační výkon [Information Power]. Praha: Czech Technical University in Prague, 2002. In Czech.

VOTRUBA Z., NOVÁK M. Alliance Approach to the Modelling of Interfaces in Complex Heterogenous Objects. Neural Network World. 2010, 20(5), pp. 609-619.

ZADEH L.A. Fuzzy Sets. Information and Control. 1965, 8(3), pp. 338-353, doi: 10.1016/S0019-9958(65)90241-X.




DOI: http://dx.doi.org/10.14311/NNW.2015.25.001

Refbacks

  • There are currently no refbacks.


Should you encounter an error (non-functional link, missing or misleading information, application crash), please let us know at nnw.ojs@fd.cvut.cz.
Please, do not use the above address for non-OJS-related queries (manuscript status, etc.).
For your convenience we maintain a list of frequently asked questions here. General queries to items not covered by this FAQ shall be directed to the journal editoral office at nnw@fd.cvut.cz.