PREDICTIVE MODEL AND METHODOLOGY FOR OPTICAL TELECOMMUNICATIONS INFRASTRUCTURE

Vladimir Douda, Mária Jánešová

Abstract


In this article a predictive model and a novel methodology of processing the data measured in the physical model of an optical telecommunications infrastructure is presented. The task is motivated by practical use of the results of experiments in the environment of the telecommunications network. I present an original predictive model and methodology, reflecting the specifics of examined infrastructure. The probabilistic prediction of the occurrence of emergencies is calculated via cluster analysis techniques used in Bayesian approach in the n‑dimensional data space. The predictive model is experimentally verified on real data. Results of experiments are interpreted for practical use in real environment of the telecommunications infrastructure.


Keywords


cluster analysis; crisis management; optical transport network

References


Nagy, I.; Suzdaleva E.; Kárný, M.; Mlynářová, T.: Bayesian Estimation of Dynamic Finite Mixtures. International Journal of Adaptive Control and Signal Processing, 2011, vol.25,9, p. 765-787

Douda, V.: Modelling of Crisis Management and Business Continuity of Telecommunication Companies. Prague: CVUT, 2015

Murray-Smith, R.; Johansen, T.: Multiple Model Approaches to Modelling and Control. Taylor & Francis, London, 1997

Titterington, D.; Smith, A.; Makov, U.: Statistical Analysis of Finite Mixtures. John Wiley, New Yourk, 1985

Kárný, M.; Nagy, I.; Novovičová, J.: Mixed-data multi-modelling for fault detection and isolation. Internat. J. Adaptive Control Signal Process, 16 (2002), 1, 61-83

Schoenberg, JR; Campbell, M.: Distributed terrain estimation using a mixture-model based algorithm. FUSION: 2009 12th International Conference on Information Fusion, Seattle, WA, vols. 1–4, 6–9 July 2009; 960–967

Wang, H.; Luo, B.; Zhang, Q.; Wei, S.: Estimation for the number of components in a mixture model using stepwise split-and-merge EM algorithm. Pattern Recognition Letters 2004; 25(16):1799–1809. DOI:10.1016/j.patrec.2004.07.007

Dacunha Castelle, D.; Gassiat, E.: The estimation of the order of a mixture model. Bernoulli 1997; 3(3):279–299

Cuesta-Albertos, JA.; Matran, C.; Mayo-Iscar, A.: Robust estimation in the normal mixture model based on robust clustering. Journal of the Royal Statistical Society Series B—Statistical Methodology 2008; 70(Part 4):779–802

WROBEL, Leo A.; WROBEL Sharon M.: Disaster recovery planning for communication and critical infrastructure. Norwood: Artech House, 2009. ISBN 978-1-59693-468-9

BATES, J. Regis.: Disaster recovery planning: Networks, telecommunications and data communications. New York: McGraw-Hill, 1992. ISBN 0-07-004128-8

Procházková, D.: Analýza a řízení rizik. Praha: ČVUT 2011. ISBN 978-80-01-04841-2

Xiaowei, Xu; Jager, J.; Kriegel, H.: A fast parallel clustering algorithm for large spatial databases. In: Data Mining and Knowledge Discovery, Springer, 3 (1999), 3, pp. 263–290

T. Zhang, R. Ramakrishnan and M. Livny: Birch: A new data clustering algorithm and its applications. In: Data Mining and Knowledge Discovery, Springer, 1 (1997), 2, pp. 141–182

Toshikazu, S.; Zubair, F.; Thuan, N.; Hiroki, N.; Masataka, N.; Fumiyuki, A.; Nei, K.; Atsushi, T.; Tomoaki, K.; Hiromichi, K.; Shigeki, K.: Disaster-resilient networking: a new vision based on movable and deployable resource units. IEEE Network, 2013. Vol. 27, Issue 4, ISSN: 0890-8044

Sterbenz, J.; Çetinkaya, E.; Hameed, M.; Jabbar, A.; Qian, S.; Rohrer, J.: Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation, and experimentation. Telecommunication Systems, 2/2013. Vol. 52 Issue 2, p705-736, ISSN: 1018-4864




DOI: http://dx.doi.org/10.14311/NNW.1901.%25x

Refbacks

  • There are currently no refbacks.


Should you encounter an error (non-functional link, missing or misleading information, application crash), please let us know at nnw.ojs@fd.cvut.cz.
Please, do not use the above address for non-OJS-related queries (manuscript status, etc.).
For your convenience we maintain a list of frequently asked questions here. General queries to items not covered by this FAQ shall be directed to the journal editoral office at nnw@fd.cvut.cz.